firebox
Forcepoint: DLP na które Cię stać

Forcepoint: DLP na które Cię stać





Poznaj zaawansowane i proste w implementacji rozwiązania Forcepoint DLP

Jak właściwie podejść do projektu wdrożenia DLP i co należy mieć na uwadze, wybierając technologię, którą będziemy testować w naszej sieci? Jak poradzić sobie z tendencją użytkowników do oceniania osobiście stworzonych dokumentów.  Zaprosiliśmy do naszego wirtualnego studia Alexandra. Wspólnie rozmawialiśmy na temat tego, czy wdrożenie DLP rzeczywiście jest tak skomplikowane, jak się powszechnie uważa.

Forcepoint DLP dostepne jest na rynku od ponad 4 lat, wcześniej rozwiązanie to znane było jako Websense. Jak dziś wygląda ta technologia? Czym różni się DLP sieciowe od endpointowego? W jakich sytuacjach DLP jest najbardziej przydatne? O tym wszystkim porozmawiamy w trakcie naszego webinarium.

Porcepoin DLP - schemat działania

Forcpoint DLP: fingerprinting i machine learning

Wyjaśnimy, jak działa fingerprinting danych strukturalnych i niestrukturalnych. Pokażemy też jak automatycznie nadawać etykiety dokumentom zawierającym dane osobowe, i inne wyrażenia regularne, charakterystyczne dla wrażliwych danych. Pokażemy jak w Forcepoint działa algorytm analizy i oceniania treści, tak aby rozpoznać informacje, które już wcześniej były poddawane ochronie. Przeanalizujemy różne scenariusze, które pozwalają ocenić, jakie dokumenty, i w jakim stopniu, powinny być dodawane do bazy „odcisków placów”.

Forcepoint DLP wykorzystuje też mechanizmy machine learning w celu rozpoznawania dokumentów, które powinny być poddane ochronie. Wyobraźmy sobie, że firma zajmuje się udzielaniem kredytów. W większości przypadków umowy kredytowe wyglądają bardzo podobnie, choć oczywiście różnią się treścią. Machine Learning w Forcepoint DLP pozwala nauczyć oprogramowanie, aby mogło rozpoznawać w przyszłości kolejne umowy, bez względu na dane, które zawiera. Tak samo działa mechanizm w przypadku kodu źródłowego. Raz rozpoznany schemat pozwala kategoryzować i odpowiednio chronić dokumenty, które zostaną stworzone w tym samym języku w przyszłości.

Machine learning w DLP pomaga także zmniejszać ilość gromadzonych danych, znacznie powyżej wolumenów przechowywanych w przypadku fingerprintów. Takie podejście zdecydowanie przewyższa skutecznością narzędzia oparte o metody deklaratywne, czy słownikowe.

Nagranie webinarium możesz pobrać bezpłatnie z naszej strony, po wypełnieniu formularza poniżej.


Materiały video:

Panel

hand-gear

ZAPISZ SIĘ NA PREZENTACJĘ INDYWIDUALNĄ

ZAPYTAJ

O product

hand-gear

DARMOWE TESTY

Ważne: nasza strona wykorzystuje pliki cookies.

Używamy informacji zapisanych za pomocą cookies i podobnych technologii m.in. w celach reklamowych i statystycznych oraz w celu dostosowania naszych serwisów do indywidualnych potrzeb użytkowników. Mogą też stosować je współpracujący z nami reklamodawcy, firmy badawcze oraz dostawcy aplikacji multimedialnych. W programie służącym do obsługi internetu można zmienić ustawienia dotyczące cookies.

Korzystanie z naszych serwisów internetowych bez zmiany ustawień dotyczących cookies oznacza, że będą one zapisane w pamięci urządzenia.

Więcej informacji dotyczących polityki prywatności znajdziesz w zakładce z regulaminem.

Akceptuj